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Abstract We show how to apply the macroscopic fluctuation theory (MFT) of Bertini, De
Sole, Gabrielli, Jona-Lasinio, and Landim to study the current fluctuations of diffusive sys-
tems with a step initial condition. We argue that one has to distinguish between two ways
of averaging (the annealed and the quenched cases) depending on whether we let the initial
condition fluctuate or not. Although the initial condition is not a steady state, the distrib-
ution of the current satisfies a symmetry very reminiscent of the fluctuation theorem. We
show how the equations of the MFT can be solved in the case of non-interacting particles.
The symmetry of these equations can be used to deduce the distribution of the current for
several other models, from its knowledge (Derrida and Gerschenfeld in J. Stat. Phys. 136,
1–15, 2009) for the symmetric simple exclusion process. In the range where the integrated
current Qt ∼ √

t , we show that the non-Gaussian decay exp[−Q3
t /t] of the distribution of

Qt is generic.

Keywords Non-equilibrium systems · Large deviations · Current fluctuations

1 Introduction

The study of the fluctuations of currents of energy or of particles is central in the theory of
non-equilibrium systems. Over the last decade, the macrosopic fluctuation theory (MFT),
a theory of diffusive systems maintained in a non-equilibrium steady state by contact with
two heat baths or two reservoirs of particles, has been developed [1, 2]. This theory was
first implemented to give a framework to calculate the large deviation functional of density
profiles in non-equilibrium steady states [4–9]. It was then understood that it could also
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Fig. 1 The step initial condition
with a density ρa at the left of the
origin and ρb at the right of the
origin

be used to predict the distribution of the current through non-equilibrium diffusive systems
[10–15].

The macroscopic fluctuation theory gives a large scale description of lattice models such
as the symmetric simple exclusion process (SSEP) or the Kipnis Marchioro Presutti model
[16–19]. At the microscopic level, several properties of these models can be obtained using
numerical [17, 18, 20], perturbative [21, 22], or exact approaches [23], such as the matrix
method [24–26] or the Bethe ansatz [15, 27, 28]. Whenever the comparison has been possi-
ble, it is remarkable that a perfect agreement has been found between the results (on the large
deviations of the density profile [24–26] or on the probability distribution of the current [17,
18, 21]) obtained by these microscopic approaches and the predictions of the macroscopic
fluctuation theory [5, 7, 10]. Moreover the MFT led to the prediction of rather surprising
properties of diffusive systems, such as the possibility of phase transitions [12–14] in the
large deviation function of the current, or the universality of the cumulants of the current on
the ring geometry [15]. So far the MFT has only been used on systems at equilibrium, or in
non-equilibrium steady states.

In a recent work [29], we considered the fluctuations of the integrated current Qt through
the origin of the SSEP, starting with a non steady state initial condition: a step in the density
profile at the origin with density ρa on the negative axis and density ρb on the positive axis,
as shown in Fig. 1.

The SSEP is one of the simplest lattice gas models, and has been extensively studied in
the theory of non-equilibrium systems [30–32]. The distribution of the integrated current
Qt , for the SSEP, is related to the time decay of constrained one dimensional Ising models
[33]. In the SSEP, particles diffuse on the lattice with nearest neighbor jumps and a hard
core interaction which enforces that there is never more than one particle on each site (in
practice, the configuration at time t is specified by a binary variable τi(t) = {1 or 0} on
each lattice site, which indicates whether site i is occupied or empty; the dynamics is such
that these occupation numbers are exchanged at rate 1 between every pair of neighboring
sites on the lattice). Using the Bethe ansatz and several identities proved recently by Tracy
and Widom [34–36] for exclusion processes on the line, we were able to show [29] that the
generating function of the total flux Qt of particles through the origin during a long time t

takes the form
〈
eλQt

〉 � e
√

tμ(λ,ρa,ρb), (1)

with μ(λ,ρa, ρb) given by

μ(λ,ρa, ρb) = 1

π

∫ ∞

−∞
dk log

[
1 + ωe−k2

]
, (2)

and where ω is a function of ρa,ρb and λ

ω = ρa(e
λ − 1) + ρb(e

−λ − 1) + ρaρb(e
λ − 1)(e−λ − 1). (3)

Beyond the fact that μ is a function of the single parameter ω, which was proved in [29],
one can see from (1), (2), (3) that
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1. All the cumulants of Qt grow like
√

t .
2. μ(λ,ρa, ρb) satisfies a symmetry very reminiscent of the fluctuation theorem [40–45]:

μ
(
λ,ρa, ρb

) = μ

(
−λ + log

ρb

1 − ρb

− log
ρa

1 − ρa

,ρa, ρb

)
(4)

(this is because ω in (3) is left unchanged by this symmetry).
3. For technical reasons in the way that (2) was derived in [29], we had to impose the

condition that |ω| < √
2/π . If one assumes that the range of validity of (2) extends to all

ω > −1, one gets that μ � 4
3π

(logω)3/2 for large ω, which would imply that for large q

Probability

(
Qt√

t
� q

)
� exp

[
−π2

12
q3

√
t

]
= exp

[
−π2

12

Q3
t

t

]
. (5)

The goal of the present work is to see how the above results (1)–(5), obtained for the
SSEP with the step initial condition of Fig. 1, can be understood from the point of view of
the MFT and how they can be extended to more general diffusive systems.

When the dynamics is stochastic, the integrated current Qt through the origin depends
both on the history (i.e. on all the updates between time 0 and time t ) and on the initial
condition (which, for the SSEP, is drawn according to a Bernoulli measure of mean ρa on
the negative axis (i ≤ 0) and ρb on the positive axis (i ≥ 1)). Very much like in the theory
of disordered systems, where one can distinguish between an annealed average (where the
partition function is averaged over all the realizations of the disorder) and a quenched aver-
age (where the partition function is calculated for a typical realization of the disorder), one
can define here two expressions of μ(λ):

– the annealed case where, as in the derivation of (1)–(3) in [29], one averages eλQt both
on the history and on the initial condition

μannealed(λ) = lim
t→∞

1√
t

log
[〈

eλQt
〉
history,initial condition

]
; (6)

it turns out that the initial conditions which dominate the average are atypical as shown
in Fig. 2.

– the quenched case, where one averages eλQt only on the history for a typical initial con-
dition

μquenched(λ) = lim
t→∞

1√
t

〈
log

[〈
eλQt

〉
history

]〉

initial condition
. (7)

The difference between these two averages, and their influence on the distribution of the
current, has already been studied for the totally asymmetric exclusion process (TASEP)
using the microscopic dynamics [37].

In Sect. 2, we formulate the calculation of both μannealed and μquenched in the framework
of the MFT. In Sect. 3, we see that μannealed satisfies the symmetry (4) for general diffusive
systems, and for general non-steady state initial conditions. No such symmetry seems to hold
in the quenched case. In Sect. 4, we consider the case of non-interacting random walkers,
where both μannealed and μquenched can be determined exactly. In Sect. 5 we show that, for the
SSEP, the single-parameter dependence (3) of μannealed can be understood from a remarkable
invariance of the MFT. In Sect. 6, we obtain bounds on the decay of the distribution of Qt

which shows that (5) is generic for a broader class of diffusive systems.
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Fig. 2 Average rescaled density profile ρ(x, τ ) (see (14)) for the SSEP, in the annealed and quenched cases,
when λ = 1.5, ρa = 0.6 and ρb = 0.4. While the initial profile is a step function in the quenched case, it
deviates from it in the annealed case

2 The Annealed and the Quenched Averages

In this section we show how the macroscopic fluctuation theory [1, 2] can be used to cal-
culate the generating function of the integrated current Qt when the initial condition is a
step density profile. The theory is in principle valid for arbitrary diffusive systems with one
conserved quantity, such as the number of particles or the energy. Here, for simplicity, we
consider the case of a one dimensional lattice gas where a configuration is characterized by
the numbers ni of particles on each site i.

Imagine first that this one dimensional system has a finite length L, and that it is in
contact, at its two ends, with two reservoirs of particles at density ρa and ρb . In this finite
geometry, the system’s stochastic evolution reaches a steady state, where the flux Qt of
particles during a long t has a certain average 〈Qt 〉 and a certain variance 〈Q2

t 〉c = 〈Q2
t 〉 −

〈Qt 〉2. Close to equilibrium, i.e. when the densities of the two reservoirs are close (ρa �
ρb � r with ρa − ρb � r), and for a large system size L, one expects [10, 32] that

lim
t→∞

〈Qt 〉
t

� D(r)

L
(ρa − ρb) (8)

and

lim
t→∞

〈Q2
t 〉c
t

� σ(r)

L
, (9)

where D(r) and σ(r) are two functions which characterize the transport of particles through
this diffusive system.

At equilibrium (for ρa = ρb = r), the weights of all microscopic configurations are given
by the Boltzmann weights. For large L, if one introduces a rescaled position 0 < x =
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i/L < 1, the probability of observing a given density profile ρ(x), when the two reservoirs
are at the same density r , satisfies [3, 32]

Proeq.(ρ(x)) � exp[−LFeq.(ρ(x))],
where the large deviation function Feq. is given by

Feq.(ρ(x)) =
∫ 1

0

[
f (ρ(x)) − f (r) − (ρ(x) − r)f ′(r)

]
dx, (10)

and f (r) is the free energy per site of the equilibrium system at density r (defined as f (r) =
− limL→∞(logZ(Lr,L)/L) where Z(N,L) is the partition function of the system with N

particles on L sites). One can show [30, 32] that the fluctuation dissipation theorem, which
is satisfied at equilibrium, implies that

f ′′(r) = 2D(r)

σ (r)
. (11)

For a diffusive system on a one dimensional lattice of L sites, in contact with two reser-
voirs at densities ρa and ρb , the average density 〈ni(t)〉 near position i and time t , and the
total flux of particles Qi(t) through position i between times 0 and t , are expected to follow
diffusive scaling laws. For large L, and for times of order L2, they take the form

〈ni(t)〉 = ρ

(
i

L
,

t

L2

)
and Qi(t) = Lq

(
i

L
,

t

L2

)
.

From the large deviation hydrodynamics theory [14, 30, 32, 38, 39], the probability of ob-
serving a certain density profile ρ(x, τ ) and current profile j (x, τ ) ≡ ∂q(x, τ )/∂τ over the
rescaled time interval 0 < τ < t/L2 is expressed as

Pro
({ρ(x, τ ), j (x, τ )}) � exp

[
−L

∫ t/L2

0
dτ

∫ 1

0
dx

[j (x, τ ) + D(ρ(x, τ))
∂ρ(x,τ )

∂x
]2

2σ(ρ(x, τ ))

]
, (12)

where D(ρ) and σ(ρ) are defined as in (8), (9). Expression (12) simply means that, locally,
Fick’s law (j = −D(ρ)ρ ′) is satisfied everywhere up to Gaussian current fluctuations of
variance σ(ρ). The conservation of the number of particles, ni(t)−ni(0) = Qi−1(t)−Qi(t),
becomes a conservation law on the rescaled density and current profiles:

∂ρ

∂τ
= − ∂j

∂x
. (13)

For a non-steady state initial condition, as in Fig. 1, the system size is infinite. If one
observes the fluctuations of the current over a long time t , one can introduce a characteristic
length

√
t . The average density 〈ni(t

′)〉 near site i and the integrated current Qi(t
′) between

times 0 and t ′ < t then become scaling functions of the form

〈ni(t
′)〉 = ρ

(
i√
t
,
t ′

t

)
and Qi(t

′) = √
tq

(
i√
t
,
t ′

t

)
, (14)

and the probability of observing such rescaled density and current profiles is given by

Pro
({ρ(x, τ ), j (x, τ )}) � exp

[
−√

t

∫ 1

0
dτ

∫ ∞

−∞
dx

[j (x, τ ) + D(ρ(x, τ))
∂ρ(x,τ )

∂x
]2

2σ(ρ(x, τ ))

]
. (15)
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The integrated current Qt through the origin during time t can then be written as

Qt =
∑

i≥1

ni(t) − ni(0) � √
t

∫ ∞

0
dx[ρ(x,1) − ρ(x,0)]. (16)

Moreover, when the initial condition is a local equilibrium configuration at density ρa on
the negative axis and density ρb on the positive axis, as in Fig. 1, the probability Proinitial of
the initial profile ρ(x,0) is given by

Proinitial(ρ(x,0)) � exp
[
−√

t Finit.(ρ(x,0))
]
, (17)

where (10), (11)

Finit.(ρ(x,0)) =
∫ ∞

−∞

[
f (ρ(x,0)) − f (r(x)) − (ρ(x,0) − r(x))f ′(r(x))

]
dx (18)

=
∫

dx

∫ ρ(x,0)

r(x)

dz(ρ(x,0) − z)
2D(z)

σ (z)
, (19)

and r(x) is the step density profile

r(x) = (1 − θ(x))ρa + θ(x)ρb (20)

(θ(x) is the Heaviside function).

2.1 The Annealed Case

Therefore (6), (15), (16), (18) lead to the following expression for μannealed:

μannealed(λ) = max
ρ(x,τ ),j (x,τ )

{
−Finit.(ρ(x,0)) + λ

∫ ∞

0
dx[ρ(x,1) − ρ(x,0)]

−
∫ 1

0
dτ

∫ ∞

−∞
dx

[j (x, τ ) + D(ρ(x, τ))
∂ρ(x,τ )

∂x
]2

2σ(ρ(x, τ ))

}
. (21)

Finding the optimal ρ(x, τ ) and j (x, τ ) in (21) has to be done carefully because they are
related by the conservation law (13).

As shown in Appendix A (see also [5, 8]), one can replace the variational form (21) by
another variational form:

μannealed(λ) = max
ρ(x,τ ),H(x,τ )

{
−Finit.(ρ(x,0)) + λ

∫ ∞

0
dx[ρ(x,1) − ρ(x,0)]

−
∫ 1

0
dτ

∫ ∞

−∞
dx

[
H(x, τ)

∂ρ(x, τ )

∂τ
+ D(ρ(x, τ ))

∂H(x, τ )

∂x

∂ρ(x, τ )

∂x

− σ(ρ(x, τ ))

2

(
∂H(x, τ )

∂x

)2]}
, (22)

where ρ(x, τ ) and H(x, τ) are independent. The optimal ρ(x, τ ) and H(x, τ) in (22) satisfy

∂ρ(x, τ )

∂τ
= ∂

∂x

[
D(ρ(x, τ ))

∂ρ(x, τ )

∂x

]
− ∂

∂x

[
σ(ρ(x, τ ))

∂H(x, τ )

∂x

]
, (23)
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∂H(x, τ )

∂τ
= −D(ρ(x, τ ))

∂2H(x, τ)

∂x2
− σ ′(ρ(x, τ ))

2

(
∂H(x, τ )

∂x

)2

, (24)

with the boundary conditions

H(x,1) = λθ(x), (25)

H(x,0) = λθ(x) + 2
∫ ρ(x,0)

r(x)

D(ρ)

σ (ρ)
dρ, (26)

where we have used (11) and (18).
Thus in annealed case one can use either (21) or (22)–(26) to obtain μannealed(λ). Using

the fact that ρ(x, τ ) satisfies (23) and that ρ(x, τ ) and H(x, τ) have limiting values (ρa,ρb)
and (0, λ) as x → ±∞, one can simplify (22) to get

μannealed(λ) = −Finit.(ρ(x,0)) + λ

∫ ∞

0
dx[ρ(x,1) − ρ(x,0)]

−
∫ 1

0
dτ

∫ ∞

−∞
dx

σ(ρ(x, τ ))

2

(
∂H(x, τ )

∂x

)2

. (27)

2.2 The Quenched Case

In the quenched case, the main difference is that ρ(x,0) is no longer allowed to fluctuate.
Therefore the boundary condition (26) at τ = 0 is replaced by

ρ(x,0) = r(x), (28)

and (21) becomes

μquenched(λ) = max
ρ(x,τ ),j (x,τ )

{
λ

∫ ∞

0
dx[ρ(x,1) − ρ(x,0)]

−
∫ 1

0
dτ

∫ ∞

−∞
dx

[j (x, τ ) + D(ρ(x, τ ))
∂ρ(x,τ )

∂x
]2

2σ(ρ(x, τ ))

}
, (29)

with the max taken over all the profiles satisfying (13) and (28). In terms of the field H , one
gets

μquenched(λ) = λ

∫ ∞

0
dx[ρ(x,1) − ρ(x,0)] −

∫ 1

0
dτ

∫ ∞

−∞
dx

σ(ρ(x, τ )

2

(
∂H(x, τ )

∂x

)2

,

(30)
with ρ and H satisfying (23)–(25) but with (28 ) instead of (26).

Remark From the expressions (21)–(29) and (19),

Finit(ρ(x,0)) =
∫

dx

∫ ρ(x,0)

r(x)

dz(ρ(x,0) − z)
2D(z)

σ (z)
,

one can see that the case where D(ρ) = 1 and σ(ρ) is a quadratic function [6, 19] of ρ,

D(ρ) = 1; σ(ρ) = 2Aρ(B − ρ), (31)
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can be easily related to the SSEP, for which (see [10])

D(ρ) = 1; σ(ρ) = 2ρ(1 − ρ). (32)

In fact, if one makes the change of variable

ρ → Bρ; j → Bj

one gets for the choice (31) that, both in the annealed and in the quenched case,

μ(λ,ρa, ρb) = 1

A
μSSEP

(
ABλ,

ρa

B
,
ρb

B

)
. (33)

In the annealed case, where the exact expression of the SSEP is available (1)–(3), one gets

μannealed(λ,ρa, ρb) = 1

Aπ

∫ ∞

−∞
dk log

[
1 + ωe−k2

]
, (34)

where

ω = ρa(e
ABλ − 1)

B
+ ρb(e

−ABλ − 1)

B
+ ρaρb(e

ABλ − 1)(e−ABλ − 1)

B2
. (35)

In the limit A = B−1 → 0, this gives μannealed when σ = 2ρ, i.e. in the case of non-interacting
particles (51) that we will discuss in Sect. 4. Assuming that (34), (35) remain valid for non-
physical values of A and B , one would get μannealed, without any further calculation, for the
Kipnis Marchioro Presutti model [16–19] where σ = 4ρ2 (in the limit B → 0,A → −2).

3 The Time Reversal Symmetry

In this section we are going to see that the symmetry (4) can be extended to more general
diffusive systems. To do so, let us consider the difference Finit.(ρ(x,1)) − Finit.(ρ(x,0)).
Using (18), one has

Finit.(ρ(x,1)) − Finit.(ρ(x,0))

=
∫ ∞

−∞
dx

[
f (ρ(x,1)) − f (ρ(x,0)) − (ρ(x,1) − ρ(x,0))f ′(r(x))

]
,

which can be rewritten as

Finit.(ρ(x,1)) − Finit.(ρ(x,0)) =
∫ 1

0
dτ

∫ ∞

−∞
dxf ′(ρ(x, τ ))

∂ρ(x, τ )

dτ

−
∫ ∞

−∞
(ρ(x,1) − ρ(x,0))f ′(r(x))dx.

Then, using (13), an integration by parts, and (11), one can rewrite the right-hand side as
∫∫

dτdxf ′′(ρ(x, τ ))
∂ρ(x, τ )

∂x
j (x, τ ) −

∫ ∞

−∞
(ρ(x,1) − ρ(x,0))f ′(r(x))dx

=
∫∫

dτdx
2D(ρ(x, τ ))

σ (ρ(x, τ ))

∂ρ(x, τ )

∂x
j (x, τ ) −

∫ ∞

−∞
(ρ(x,1) − ρ(x,0))f ′(r(x))dx. (36)
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This allows one to rewrite the last term in (21) as

∫∫
dτdx

[j + D∂xρ]2

2σ
= Finit.(ρ(x,1)) − Finit.(ρ(x,0))

2

+
∫ ∞

−∞
dx(ρ(x,1) − ρ(x,0))

f ′(r(x))

2

+
∫∫

dτdx
j 2 + (D∂xρ)2

2σ
(37)

and therefore (21) becomes

μannealed(λ) = max
ρ(x,τ ),j (x,τ )

{
− Finit.(ρ(x,1)) + Finit.(ρ(x,0))

2

+
∫ ∞

−∞
dx[ρ(x,1) − ρ(x,0)]

[
λθ(x) − f ′(r(x))

2

]

−
∫∫

dτdx
j 2 + (D(ρ)∂xρ)2

2σ(ρ)

}
. (38)

For the step initial density profile (20), one has (11)

f ′(r(x)) = f ′(ρa) − θ(x)

∫ ρa

ρb

2D(ρ)

σ(ρ)
dρ.

One can then see in (38) that the initial time and the final time play symmetric roles: if one
replaces {ρ(x, τ ), j (x, τ )} by {ρ(x,1 − τ),−j (x,1 − τ)}, (38) is left unchanged provided
that λ → −λ − ∫ ρa

ρb

2D(ρ)

σ(ρ)
dρ (one has to use that, from the conservation of the total number

of particles,
∫ ∞

−∞[ρ(x,1) − ρ(x,0)]dx = 0). Therefore μannealed satisfies

μannealed(λ) = μannealed

(
−λ −

∫ ρa

ρb

2D(ρ)

σ(ρ)
dρ

)
. (39)

This is a generalization of (4) (for the SSEP (32), D(ρ) = 1 and σ(ρ) = 2ρ(1−ρ), and (39)
reduces to (4)) and therefore shows that a version [32] of the fluctuation theorem [40–45]
holds for general diffusive systems with the step initial condition considered here. Although
this initial condition is neither an equilibrium state, nor a non-equilibrium steady state, the
time reversal symmetry (39) holds. We think that this is because, in the annealed case, the
initial condition is in local equilibrium.

One can repeat the same transformations in the quenched case. Due to the absence of
Finit.(ρ(x,0)) in (29), one ends up with an expression where ρ(x,1) and ρ(x,0) do not
play symmetric roles, so that μquenched does not seem to satisfy any kind of time reversal
symmetry.

Remark By the same reasoning, one can show that the symmetry (39) holds for more general
initial conditions than the step initial profile. One can consider at t = 0 an initial density
profile

r(x) = (1 − v(x))ρa + v(x)ρb, (40)
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where v(x) is no longer a step as in (20) but could be a more general sigmoid function with
v(−∞) = 0 and v(∞) = 1. One can also replace the measure of the integrated current (16)
at the origin by its weighted average over space in a region around the origin:

Qt = √
t

∫ ∞

−∞
dxw(x)[ρ(x,1) − ρ(x,0)],

where w(x) is another sigmoid function. Then following exactly the same steps as in the
derivation of (38) one gets

μannealed(λ) = max
ρ(x,τ ),j (x,τ )

{
− Finit.(ρ(x,1)) + Finit.(ρ(x,0))

2

+
∫ ∞

−∞
dx[ρ(x,1) − ρ(x,0)]

[
λw(x) +

∫ ρa

r(x)

D(ρ)

σ (ρ)
dρ

]

−
∫∫

dτdx
j 2 + (D(ρ)∂xρ)2

2σ(ρ)

}
(41)

from which one can see that the time reversal symmetry (39) remains valid if v(x) and w(x)

are related by

w(x) =
[∫ ρa

r(x)

D(ρ)

σ (ρ)
dρ

]/[∫ ρa

ρb

D(ρ)

σ (ρ)
dρ

]
. (42)

Remark No time reversal symmetry seems to hold in the quenched case. However, if an ad-
ditional symmetry (the particle-hole symmetry) holds, one can relate μannealed and μquenched.
In Appendix B, we show that, if D(ρ) and σ(ρ) satisfy

{
D(ρ) = D(2ρ̄ − ρ),

σ (ρ) = σ(2ρ̄ − ρ),
(43)

then the optimal profile ρ(a)(x, τ ) for the annealed variational problem (21) when ρa = ρb =
ρ̄ is such that

ρ(a)(x, τ ) = 2ρ̄ − ρ(a)(x,1 − τ). (44)

This implies in particular that ρ(a)(x, τ = 1/2) = ρ̄ and allows one to relate the optimal
annealed (21) and quenched (29) profiles (see Appendix B), leading to

μquenched(λ,ρa = ρb = ρ̄) = 1√
2
μannealed(λ,ρa = ρb = ρ̄). (45)

For the SSEP (32) the particle-hole symmetry (43) is satisfied, and therefore (45) holds,
for ρ̄ = 1/2. Thus μquenched(λ,ρa = ρb = 1/2) can be deduced from the exact expression
(2), (3).

4 The Non-interacting Walkers

The problem with the expressions (21) or (29) is that it is very hard to solve the equations
satisfied by the time dependent density and current profiles for general D(ρ) and σ(ρ). In
this section, we solve the easy case of non-interacting random walkers.
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Let us consider non-interacting particles on an infinite one dimensional lattice. Each
particle on this lattice jumps at rate 1 to each of its neighboring sites, irrespective of the
positions of the other particles. One can show (see Appendix C) that in this case

D(ρ) = 1; σ(ρ) = 2ρ; f (ρ) = ρ logρ − ρ. (46)

Then (23) becomes

∂ρ(x, τ )

∂τ
= ∂2ρ(x, τ )

∂x2
− ∂

∂x

[
2ρ(x, τ )

∂H(x, τ )

∂x

]
, (47)

and the evolution equation (24) of H becomes autonomous:

∂H(x, τ )

∂τ
= −∂2H(x, τ)

∂x2
−

(
∂H(x, τ )

∂x

)2

. (48)

It is easy to check that the general solution of (47), (48) can be written as

H(x, τ) = lnG(x, τ) and ρ(x, τ ) = G(x, τ)R(x, τ ),

where G antidiffuses and R diffuses:

∂G(x, τ )

∂τ
= −∂2G(x, τ)

∂x2
; ∂R(x, τ )

∂τ
= ∂2R(x, τ )

∂x2
.

As the boundary condition (25) holds both for the annealed and the quenched case, one gets

G(x, τ) = eλ + 1

2
+ eλ − 1

2
E

(
x

2
√

1 − τ

)
,

where E(z) is the error function

E(z) = 2√
π

∫ z

0
e−u2

du. (49)

In the annealed case, the boundary condition (26) becomes

ρ(x,0) = r(x)e−λθ(x)G(x,0)

and, using (46), the solution of (47) for this boundary condition is

ρ(x, τ ) =
[

ρbe
−λ + ρa

2
+ ρbe

−λ − ρa

2
E

(
x

2
√

τ

)]
G(x, τ).

From (23), (24), (46), one can show that

ρ

(
∂H

∂x

)2

= ∂(Hρ)

∂τ
− ∂

∂x

(
H

∂ρ

∂x
− ρ

∂H

∂x
− 2Hρ

∂H

∂x

)
.

Using this identity in (27) and the fact that ρ and H have limiting values at ±∞, one gets

μannealed(λ) = −Finit.(ρ(x,0)) + λ

∫ ∞

0
dx[ρ(x,1) − ρ(x,0)]
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−
∫ ∞

−∞
dx[H(x,1)ρ(x,1) − H(x,0)ρ(x,0)]. (50)

Using (11), (18), (25) and (26), one then has

μannealed(λ) =
∫ ∞

−∞
dx[ρ(x,0)f ′(ρ(x,0)) − f (ρ(x,0)) − r(x)f ′(r(x)) + f (r(x))],

and, as f (ρ) = ρ logρ − ρ, one gets

μannealed(λ) =
∫ ∞

−∞
dx[ρ(x,0) − r(x)]

= ρa

eλ − 1

2

∫ 0

−∞

[
1 + E

(
x

2

)]
dx + ρb

e−λ − 1

2

∫ ∞

0

[
1 − E

(
x

2

)]
dx.

This leads to

μannealed(λ) = ρa(e
λ − 1) + ρb(e

−λ − 1)√
π

. (51)

One can notice that this is just the limit of (2), (3) when ρa and ρb are small (at low density
the exclusion rule in the SSEP can be neglected). One can also see by expanding (50) in
powers of λ that in the long time limit

〈Q〉
t

→ ρa − ρb√
π

; 〈Q2〉c
t

→ ρa + ρb√
π

. (52)

In the quenched case, the boundary condition is (28) instead of (26). Therefore the profile
becomes

ρ(x, τ ) =
[

ρb + ρa

2
+ ρb − ρa

2
E

(
x

2

√
τ

)]
G(x, τ)

G(x,0)
.

Then, following the same steps as in the derivation of (50), one gets

μquenched(λ) = λ

∫ ∞

0
dx[ρ(x,1) − ρ(x,0)] −

∫ ∞

−∞
dx[H(x,1)ρ(x,1) − H(x,0)ρ(x,0)],

which leads to

μquenched(λ) = ρa

∫ 0

−∞
dx logG(x,0) + ρb

∫ ∞

0
dx log[e−λG(x,0)].

Therefore

μquenched(λ) = ρa

∫ 0

−∞
dx log

[
eλ + 1

2
+ eλ − 1

2
E

(
x

2

)]

+ ρb

∫ ∞

0
dx log

[
1 + e−λ

2
+ 1 − e−λ

2
E

(
x

2

)]
. (53)

The expansion in powers of λ leads to

〈Q〉
t

→ ρa − ρb√
π

; 〈Q2〉c
t

→ ρa + ρb√
2π

, (54)
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which shows that the annealed (52) and quenched (54) cases start to differ at the level of the
variance of Qt .

Remark Taking the λ → ∞ limit of the expression (53) of μquenched(λ), one obtains

μquenched(λ) ∼
λ→∞

4

3
ρaλ

3/2,

(with a similar result with ρb replaced by ρa and λ by |λ| for λ → −∞). Then, we can
perform a Legendre transform to obtain the decay of the distribution of the integrated current
Qt , as defined in (7), which yields

Pro

[
Qt√

t
� q

]
�

q→∞ exp

[
−

√
tq3

12ρ2
a

]
. (55)

This non-Gaussian decay is very reminiscent of the SSEP (5). In Sect. 6, we will show that
this type of decay is rather generic.

Expression (55) can alternatively be understood from (74), as the tail is dominated by the
contribution of the first Qt particles at the left of the origin, that is:

Pro

[
Qt√

t
� q

]
�

Qt∏

i=1

exp

[
− i2

4tρ2
a

]
� exp

[
− Q3

t

12tρ2
a

]
,

where we have used that the average distance between consecutive particles is 1/ρa . In the
annealed case where the initial profile can fluctuate, the decay is slower, because the events
which dominate have an initial profile where the Qt particles are arbitrarily close to the
origin.

5 Rotational Symmetry for the SSEP

In this section, we consider the MFT of the symmetric simple exclusion process (SSEP), for
which (32) D(ρ) = 1 and σ(ρ) = 2ρ(1 − ρ). The MFT then exhibits a remarkable symme-
try: in the annealed case, this symmetry allows us to relate the generating functions of the
integrated current Qt for different values of the initial densities ρa and ρb. This relationship
takes the form of the single-parameter dependence (2)

μannealed(λ,ρa, ρb) = F(ω(λ,ρa, ρb)),

with ω given by (3). This ω dependence was already derived by considering the microscopic
dynamics of the SSEP in [29]. Here, it is recovered by showing that, when ω(λ,ρa, ρb) =
ω(λ′, ρ ′

a, ρ
′
b), an explicit transform relates the variational problems (21) with parameters

(λ,ρa, ρb) and (λ′, ρ ′
a, ρ

′
b).

This transform is inspired by a known representation of the symmetric exclusion process
in terms of spins [8]: here, the equivalent of a global rotation of these spins will allow us to
go from (λ,ρa, ρb) to (λ′, ρ ′

a, ρ
′
b). When μ is expressed as an optimum (22) over the two

independent variables ρ(x, t) and H(x, t), one can introduce a “spin” variable,
⎧
⎨

⎩

S+ = ρe−H ,

S− = (1 − ρ)eH ,

Sz = ρ − 1
2 ,

and the quadratic form S · S′ = 1

2
(S+S ′

− + S−S ′
+) + SzS

′
z.
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The bulk term in the variational problem (22) can then be rewritten as
∫∫

−H∂τρ − ∂xH∂xρ + ρ(1 − ρ)(∂xH)2 =
∫∫

−H∂τρ − ∂xS · ∂xS. (56)

The last term of this “action”, −∂xS ·∂xS, is clearly invariant under orthogonal transforms
of S. Thus, starting from the optimal profiles (ρ,H) for a given set of parameters (λ,ρa, ρb),
one can deduce sets of profiles (ρ ′,H ′), obtained by performing an orthogonal transform on
S, which satisfy the same bulk minimization equations (23), (24) as (ρ,H).

Therefore, for (ρ ′,H ′) to be the optimal profiles for other values of the parameters
(λ′, ρ ′

a, ρ
′
b), it is sufficient that they satisfy the corresponding boundary conditions: (25),

(26) in the annealed case, and (25), (28) in the quenched case.
Let us first look at these boundary conditions at τ = 0,1 for x → ±∞:

{
ρ(−∞, τ ) = ρa

H(−∞, τ ) = 0
as well as

{
ρ(∞, τ ) = ρb

H(∞, τ ) = λ

which correspond to S−∞ = (ρa,1 − ρa,ρa − 1/2) and S+∞ = (ρbe
−λ, (1 − ρb)e

λ, ρb −
1/2). Under an orthogonal transform on S, the scalar product of these vectors is necessarily
conserved:

S−∞ · S+∞ = 1

2

(
ρa (1 − ρb) eλ + ρbe

−λ (1 − ρa)
) +

(
ρa − 1

2

)(
ρb − 1

2

)
= ω

2
+ 1

4
,

with ω as defined in (3). Hence ω = ω′ is a necessary condition for (ρ ′,H ′) to be optimal
for the set of parameters (λ′, ρ ′

a, ρ
′
b).

In order to explicitly check that one can indeed relate the optimal profiles when ω = ω′,
and to compare the corresponding generating functions, we will now express the optimal
profiles (ρ,H) for (λ,ρa, ρb) in terms of the “reference profiles” (ρ̃, H̃ ) obtained for the
SSEP at uniform density 1/2: ρ̃a = ρ̃b = 1/2. When ω = ω̃, we reparametrize ρa and ρb in
terms of two variables u and v:

ρa = ev coshu − 1

eλ − 1
and ρb = e−v coshu − 1

e−λ − 1
,

so that

ω = sinh2 u and λ̃ = 2u.

One can then check (after some algebra) that the mapping (ρ̃, H̃ ) → (ρ,H):
⎧
⎪⎨

⎪⎩

ρ = 1
sinhu sinh λ

2

(
eH̃−u sinh λ+u−v

2 − sinh λ−u−v
2

)(
ρ̃eu−H̃ sinh u+v

2 − (1 − ρ̃) sinh u−v
2

)
,

eH = 1 + eu(eλ−1)(eH̃ −1)

eH̃ (eu−ev)+eu(eu+v−1)

(57)
gives a solution of the bulk equations (23), (24).

From the expression of eH , one can easily see that the final time boundary condition (25),
which is common to the annealed and quenched cases, carries over from H̃ to H :

H̃ (x,1) = 2uθ(x) =⇒ H(x,1) = λθ(x). (58)

However, the initial-time boundary condition behaves differently in the annealed and in the
quenched cases. In the quenched case, one would need that ρ(x,0) = r(x) when ρ̃(x,0) =
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1/2: this would require (57) that H̃ (x,0) = λ̃θ(x), which is not expected to be satisfied as
H̃ (x,0) is free under the quenched boundary conditions. Hence the condition (28) does not
carry over from (ρ̃, H̃ ) to (ρ,H), and (57) does not lead to the correct optimal profiles in
the quenched case.

On the other hand, the initial-time condition in the annealed case (26) is H̃ (x,0) =
2uθ(x) + f ′(ρ̃(x,0)) − f ′(1/2). Integrating the Einstein relationship (11) for D = 1,
σ = 2ρ(1 − ρ) leads to

f ′(r) = log
r

1 − r
and f (r) = r log r + (1 − r) log(1 − r). (59)

One can then check that (57) yields

H̃ (x,0) = 2uθ(x) + log
ρ̃(x,0)

1 − ρ̃(x,0)

=⇒ H(x,0) = λθ(x) + log
ρ(x,0)

1 − ρ(x,0)
− log

r(x)

1 − r(x)
. (60)

Therefore (57) maps the optimal profiles for (λ̃,1/2,1/2) to those for (λ,ρa, ρb) in the
annealed case.

This in turn allows us to relate the generating functionals μannealed(λ̃,1/2,1/2) and
μannealed(λ,ρa, ρb): taking into account the invariance of the bulk term, we obtain from (22),
(56)

μan.(λ, ρa, ρb) − μan.(λ̃,1/2,1/2) =
∫ ∞

0
dx

[
λ(ρ(x,1) − ρ(x,0)) − λ̃(ρ̃(x,1) − ρ̃(x,0))

]

− Finit.(ρ(x,0)) + F̃init.(ρ̃(x,0))

−
∫∫

dτdx[H∂τρ − H̃ ∂τ ρ̃].

Integrating by parts the last term and using (58)–(60), this can be simplified to

μan.(λ, ρa, ρb) − μan.(λ̃,1/2,1/2) =
∫

dx log
1 − r(x)

1 − ρ(x,0)

1 − ρ̃(x,0)

1 − 1/2

+
∫∫

dτdx[ρ∂τH − ρ̃∂τ H̃ ]. (61)

From (57), one can express ρ∂τH − ρ̃∂τ H̃ as a total derivative in terms of H̃ :

ρ∂τH − ρ̃∂τ H̃ = − ∂

∂τ
log

[
(eu − ev)eH̃ + eu(eu+v − 1)

]
.

Then, using the boundary conditions (58) and (60) as well as (57), we can evaluate (61): we
obtain

1 − r(x)

1 − ρ(x,0)

1 − ρ̃(x,0)

1 − 1/2
= (eu − ev)eH̃ (x,1) + eu(eu+v − 1)

(eu − ev)eH̃ (x,0) + eu(eu+v − 1)

at each x, so that μan.(λ, ρa, ρb) = μan.(λ̃,1/2,1/2).
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6 Bounds on the Decay of the Current Distribution

In this section, we attempt to generalize the non-Gaussian decay (5), (55) of the distribution
of the integrated current Qt during time t ,

Pro

[
Qt√

t
� q

]
�

q→+∞ e−α
√

tq3
,

to other diffusive systems. We had α = π2

12 for the SSEP in the annealed case [29], and
α = 1

12ρ2
a

for non-interacting particles in the quenched case (55).
Here, we show that this form of decay holds, both in the annealed and quenched averages,

when the following conditions are satisfied:
⎧
⎨

⎩

D(ρ) = 1,

σ (ρ) ≤ ρ + c for 0 ≤ ρ ≤ R,

σ(ρ) = 0 otherwise.
(62)

More precisely, we will show below that, when t → ∞ then q → +∞,

− q3

2ρaσ (ρa)
≤ 1√

t
log Pro

[
Qt√

t
� q

]
≤ − q3

12(R + c)2
. (63)

Let

g(q) = lim
t→∞

1√
t

log Pro

[
Qt√

t
� q

]
.

In the MFT, g(q) is expressed as the optimum of a variational problem, like the current
generating function μ(λ) (see (21), (29)):

g(q) = max
ρ(x,τ ),j (x,τ )

{
−Finit.(ρ(x,0)) −

∫∫
dτdx

(j + ∂xρ)2

2σ(ρ)

}
, (64)

where the density profile ρ(x, t) is such that
∫ ∞

0 dx[ρ(x,1) − ρ(x,0)] = q , and where the
current profile satisfies the conservation law ∂xj + ∂tρ = 0. In addition ρ(x,0) is free in
the annealed case while it is constrained to be equal to r(x) = ρa + (ρb − ρa)θ(x) in the
quenched case: hence

gquenched(q) ≤ gannealed(q).

Let us first obtain the lower bound in (63). Because of the variational formulation (64) (in
the quenched case, Finit.(ρ(x,0)) = 0), one can bound g(q) from below by considering a
particular profile (ρ(x, t), j (x, t)) leading to a total flux q . Here, we choose to move the
segment [−q/ρa,0], which contains q particles at time 0, at constant speed v = q/ρa from
time 0 to time 1, so that the total flux through 0 during this time will be exactly q: this
corresponds to

j (x, τ ) =
{

q for − q(1 − τ)/ρa ≤ x ≤ qτ/ρa;
−∂xρ otherwise.

Since ρ(x, τ ) = ρa for −q(1 − τ)/ρa ≤ x ≤ qτ/ρa , this leads to

g(q) ≥ −
∫ 1

0
dτ

∫ qτ/ρa

−q(1−τ)/ρa

dx
q2

2σ(ρa)
= − q3

2ρaσ (ρa)
,
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which is the lower bound in (63) both in the annealed and in the quenched cases.
The upper bound is obtained by noticing that, if σ(ρ) = 0 outside of [0,R] as in (62),

the fluctuation-dissipation relationship (10), (11) implies that Finit.(ρ(x,0)) diverges for
ρ(x,0) /∈ [0,R]. From (62), i.e. σ(ρ) ≤ ρ + c, we then obtain

g(q) ≤ max
ρ(x,τ ),j (x,τ )

−
∫∫

dτdx
(j + ∂xρ)2

2(ρ + c)
, (65)

where ρ(x, τ ) is such that 0 ≤ ρ(x,0) ≤ R and
∫ ∞

0 dx[ρ(x,1) − ρ(x,0)] = q . The right-
hand side of (65) is the maximum over ρ(x,0) of the gquenched(q) for non-interacting walkers
with initial density ρ(x,0)+c: it is maximal, for q > 0, when ρ(x,0) is equal to R for x > 0
and 0 for x < 0. This corresponds to the quenched, non-interactive case (55) at densities
R + c and c, so that

g(q) ≤ − q3

12(R + c)2
,

which is the upper bound of (63).

7 Conclusion

In the present work, we have shown (23)–(30) how to implement the macroscopic fluctu-
ation theory to study the fluctuations of the current of diffusive systems with a step initial
density profile. We have argued that, depending on whether the initial profile can fluctuate
or not, one has to perform an annealed (21), (27) or a quenched average (28)–(30). Using the
structure of the equations to be solved in the MFT, we could obtain a simple relation (31),
(33) between the generating functions of the current of the SSEP and of other models with a
quadratic σ(ρ) such as the Kipnis-Marchioro-Presutti model. Thus our solution [29] for the
SSEP determines the generating functions of the current for these other models, under the
assumption (33). We established in Sect. 3 that a time reversal symmetry (39), (40), (42),
which is a version of the fluctuation theorem for a non-steady state initial condition, holds in
the annealed case. In Sect. 4 and in Appendix C we showed that the case of non-interacting
particles can be solved both by a macroscopic and a microscopic approach. In Sect. 5 we
have seen that the ω dependence of the SSEP could be understood as a rotation invariance of
the MFT and we have exhibited (57) how the optimal profiles are changed under these rota-
tions. Lastly, in Sect. 6, we have shown that the non-Gaussian decay (5) of SSEP is generic
under some simple conditions on σ(ρ).

The main difficulty that we could not overcome was to solve (23)–(26), (28) satisfied by
the optimal ρ(x, τ ) and H(x, τ), even in the case of the SSEP where the generating function
is known. Even for large λ, we were unable to solve them, which is why we could only get
bounds on the decay of the distribution of the integrated current Qt in Sect. 6. Solving these
equations, even in the large λ limit, remains an open question.

Appendix A: Alternative form of the Variational Principle (21)

In this appendix, we first show, as in [8], how the variational form (21) where one has to
optimize over density and current profiles which satisfy the constraint (13) can be replaced,
using the Martin-Siggia-Rose formalism [46], by the expression (22) where the profiles
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ρ(x, τ ) and H(x, τ) do not satisfy any constraint. We then show that the optimal ρ(x, τ )

and H(x, τ) are solutions of (23), (24) with the boundary conditions (25), (26).

Let Pro(ρ0(x)
t→ ρ1(x)) be the probability of observing the rescaled density profile ρ1(x)

at time t , starting from an initial profile ρ0(x). Formally, it can be written (15) as a functional
integral over all the density and current profiles (ρ(x, τ ), j (x, τ )) satisfying ρ(x,0) = ρ0(x)

and ρ(x,1) = ρ1(x):

Pro(ρ0(x)
t→ ρ1(x))

�
∫

DρDj

[
∏

x,τ

δ(∂τ ρ + ∂xj)

]

exp

[
−√

t

∫∫
dxdτ

(j + D(ρ)∂xρ)2

2σ(ρ)

]
,

where the constraint (13) appears as a δ function at each point (x, τ ). One can then use an
integral representation for each of these δ functions by introducing a new field H(x, τ):

Pro(ρ0(x)
t→ ρ1(x))

�
∫

DρDj DH exp

[
−√

t

∫∫
dxdτ

(
H(∂xj + ∂τρ) + (j + D(ρ)∂xρ)2

2σ(ρ)

)]
.

One can integrate by parts
∫

dxH∂xj (this entails no boundary term as j is expected to
vanish at ±∞) to express the right-hand side as

∫
DρDj DH exp

[
−√

t

∫∫
dxdτ

(
H∂τρ + D(ρ)∂xρ∂xH − σ(ρ)

2
(∂xH)2

+ (j + D(ρ)∂xρ − σ(ρ)∂xH)2

2σ(ρ)

)]
. (66)

After a Gaussian integration over the currents j (x, τ ) we obtain Pro(ρ0(x)
t→ ρ1(x)) as an

integral over the two unconstrained fields ρ and H :

Pro(ρ0(x)
t→ ρ1(x))

�
∫

DρDH exp

[
−

∫∫
dxdτ

(
H∂τρ + D(ρ)∂xρ∂xH − σ(ρ)

2
(∂xH)2

)]
. (67)

Taking (67) together with (16) and (17), one gets μannealed(λ) as a extremum over ρ and H :

μannealed(λ) = max
ρ,H

[
−Finit.(ρ(x,0)) + λ

∫ ∞

0
dx[ρ(x,1) − ρ(x,0)]

−
∫∫

dτdx

(
H∂τρ + D(ρ)∂xρ∂xH − σ(ρ)

2
(∂xH)2

)]

which is (22).
One can then determine the equations satisfied by the optimal profiles for ρ and H by

looking at the effect of a small variation, ρ(x, τ ) → ρ(x, τ ) + δρ(x, τ ) and H(x, τ) →
H(x, τ) + δH(x, τ ): after a few integrations by parts, one obtains

0 =
∫

dxδρ(x,0)

[
− δFinit.

δρ(x,0)
− λθ(x) + H(x,0)

]
+

∫
dxδρ(x,1) [λθ(x) − H(x,1)]
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+
∫∫

dτdxδH(x, τ ) [−∂τρ + ∂x(D(ρ)∂xρ − σ(ρ)∂xH)]

+
∫∫

dτdxδρ(x, τ )

[
∂τH + D(ρ)∂2

xH + σ ′(ρ)

2
(∂xH)2

]
. (68)

This yields the two bulk equations (23), (24) satisfied by ρ and H at the optimum:

{
∂τρ = ∂x(D(ρ)∂xρ − σ(ρ)∂xH),

∂τH = −D(ρ)∂2
xH − σ ′(ρ)

2 (∂xH)2.

The first of these equations is just the conservation law, ∂xj + ∂xρ = 0, since, from (66), we
have

j = −D(ρ)∂xρ + σ(ρ)∂xH

at the optimum. Using (18) to express δFinit.
δρ(x,0)

, we also obtain from (68) the boundary rela-
tionships

{
H(x,1) = λθ(x),

H(x,0) = λθ(x) + f ′(ρ(x,0)) − f ′(r(x)),

which reduce to (25), (26) by using (11).

Appendix B: Relationship of μannealed and μquenched in the Presence of an Additional
Symmetry

In this appendix, we show that when D(ρ) and σ(ρ) satisfy the particle-hole symmetry (43),
the optimal profile (assuming that it is unique) in (21) verifies (44) when ρa = ρb = ρ̄. This
will allow us to relate the optimal profiles in the annealed and in the quenched cases and to
obtain (45).

First, when ρa = ρb(= ρ̄), the term proportional to f ′(r(x)) in (38) vanishes due to the
conservation of the total number of particles, so that (38) becomes

μannealed(λ) = max
ρ(x,τ ),j (x,τ )

{
− Finit.(ρ(x,1)) + Finit.(ρ(x,0))

2

+
∫ ∞

−∞
dx[ρ(x,1) − ρ(x,0)]λθ(x)

−
∫ 1

0
dτ

∫ ∞

−∞
dx

j (x, τ )2 + (D(ρ(x, τ ))∂xρ(x, τ ))2

2σ(ρ(x, τ ))

}
. (69)

Moreover (43) implies (see (19)) that

Finit.(ρ(x, τ )) = Finit.(2ρ̄ − ρ(x, τ )).

Therefore, if (ρ(a)(x, τ ), j (a)(x, τ )) is optimal in (69), then (2ρ̄ −ρ(a)(x,1 − τ), j (a)(x,1 −
τ)) is also optimal and, if this optimum is unique, one gets (44)

ρ(a)(x, τ ) = 2ρ̄ − ρ(a)(x,1 − τ). (70)
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Due to this symmetry, one can rewrite (69) as

μannealed(λ) = 2 max
ρ(x,τ ),j (x,τ )

{−Finit.(ρ(x,1))

2
+

∫ ∞

−∞
dx[ρ(x,1) − ρ̄]λθ(x)

−
∫ 1

1/2
dτ

∫ ∞

−∞
dx

j (x, τ )2 + (D(ρ(x, τ ))∂xρ(x, τ ))2

2σ(ρ(x, τ ))

}
(71)

with ρ(a)(x, τ = 1/2) = ρ̄ from (70).
For the quenched problem, using the identity (37), the fact that the term proportional to

f ′(r(x)) vanishes, and that Finit.(ρ(x,0) = ρ̄) = 0, one can rewrite (29) as

μquenched(λ) = max
ρ(x,τ ),j (x,τ )

{−Finit.(ρ(x,1))

2
+

∫ ∞

−∞
dx[ρ(x,1) − ρ(x,0)]λθ(x)

−
∫ 1

0
dτ

∫ ∞

−∞
dx

j (x, τ )2 + (D(ρ(x, τ ))∂xρ(x, τ ))2

2σ(ρ(x, τ ))

}
, (72)

with the initial-time condition ρ(x,0) = ρ̄.
We see that (71) and (72) are identical except for the factor 2 and the range of τ . This

allows us to relate the optimal profiles in the annealed and the quenched cases by
⎧
⎪⎨

⎪⎩

ρ(q)(x, τ ) = ρ(a)
(

x√
2
, 1+τ

2

)
,

j (q)(x, τ ) = 1√
2
j (a)

(
x√
2
, 1+τ

2

)
,

from which (45) follows easily.

Appendix C: Microscopic Derivation for Non-interacting Diffusion

In this appendix, we first show why, for non interacting walkers on a one dimensional lattice
as in Sect. 4, D(ρ),σ (ρ) and f (ρ) are given by (46). We then explain how (51) and (53)
can be recovered by a microscopic calculation.

Consider first a 1d lattice of length L: a new particle is injected at rate α on site 1 and at
rate δ on site L. Each particle on site 1 is removed at rate γ and on site L at rate δ. As the
particles do not interact, the probability that a particle Ti on site i will have escaped, after
time t , into the right reservoir evolves according to

dT1

dt
= T2 − (1 + γ )T1;

dTi

dt
= Ti+1 + Ti−1 − 2Ti for 2 ≤ i ≤ L − 1;

dTL

dt
= β + TL−1 − (1 + β)TL,

whose solution in the long time limit is

Ti = i + 1
γ

− 1

L − 1 + 1
β

+ 1
γ

.
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It is easy to see that the contribution to Qt of the particles entering the system during the
first time interval dt is

〈eλQt+dt 〉 = 〈eλQt 〉 (
1 + αT1(e

λ − 1)dt + δ(1 − TL)(e−λ − 1)dt
)
.

Therefore

lim
t→∞

1

t
log〈eλQt 〉 =

α
γ
(eλ − 1) + δ

β
(e−λ − 1)

L − 1 + 1
β

+ 1
γ

,

which becomes for large L

lim
t→∞

1

t
log〈eλQt 〉 = ρa(e

λ − 1) + ρb(e
−λ − 1)

L
,

with ρa = α
γ

and ρb = δ
β

. The expansion in powers of λ (see (8), (9)) leads to D(ρ) = 1 and
σ(ρ) = 2ρ, as in (46). For these non interacting particles, the partition function Z(N,L) =
LN/N ! so that

f (ρ) = ρ logρ − ρ

as in (46), and (11) is verified.
One can also see that at equilibrium, at density ρ, there is an invariant measure (the

equilibrium) where the occupation numbers ni of the sites are independent random variables
distributed according to a Poisson distribution

Pro(n) = Z(N − n,L − 1)Z(n,1)

Z(N,L)
� ρne−ρ

n! . (73)

Let us now consider non-interacting particles on an infinite one dimensional lattice. Each
particle jumps at rate 1 to each of its neighboring sites. The probability Pi,j (t) that a particle
initially at position i will travel a distance j − i is given, for large t , by

Pi,j (t) � 1√
4πt

e− (j−i)2

4t . (74)

The contribution of a particle initially located at site i to eλQt is

�i = 1 + (1 − θi)(e
λ − 1)

∑

j≥1

Pi,j (t) + θi(e
−λ − 1)

∑

j≤0

Pi,j (t),

where θi = 1 if i ≥ 1 and θi = 0 if i ≤ 0. In the long time limit, this becomes

�i = 1 + (1 − θi)(e
λ − 1)

1 + E( i

2
√

t
)

2
+ θi(e

−λ − 1)
1 − E( i

2
√

t
)

2
,

where E is the error function defined in (49). Therefore, for a given initial condition where
the occupation numbers ni of all the sites are specified, one gets

〈
eλQt

〉
history

= exp

[
∑

i

ni log�i

]

.

The ni are distributed according to a Poisson distribution (73) of density ρa on the neg-
ative axis and ρb on the positive axis. Averaging over the ni (i.e. over the initial conditions)
leads to (51) in the annealed case and to (53) in the quenched case.
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